Abstract

Interaction strength (IS) has been theoretically shown to play a major role in governing the stability and dynamics of food webs. Nonetheless, its definition has been varied and problematic, including a range of recent definitions based on biological rates associated with model parameters (e.g., attack rate). Results from food web theory have been used to argue that IS metrics based on energy flux ought to have a clear relationship with stability. Here, we use simple models to elucidate the actual relationship between local stability and a number of common IS metrics (total flux and per capita fluxes) as well as a more recently suggested metric. We find that the classical IS metrics map to stability in a more complex way than suggested by existing food web theory and that the new IS metric has a much clearer, and biologically interpretable, relationship with local stability. The total energy flux metric falls off existing theoretical predictions when the total resource productivity available to the consumer is reduced despite increased consumer attack rates. The density of a consumer can hence decrease when its attack rate increases. This effect, called the paradox of attack rate, is similar to the well-known hydra effect and can even cascade up a food chain to exclude a predator when consumer attack rate is increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.