Abstract

We model the enhancement of near band edge emission from ZnO nanorods using plasmonic metal nanoparticles and compare it with emission enhancement from ZnO with semiconducting quantum dots. Selected CdSe quantum dots with absorption energies close to those of Ag and Au nanoparticles are chosen to construct model systems with ZnO to comprehend the role of ZnO's intrinsic defects and plasmonic excitation in realizing the spectrally selective luminescence enhancement. Excitation wavelength dependent photoluminescence spectra along with theoretical models quantifying the related transitions and plasmonic absorption reveal that a complex mechanism of charge transfer between the ZnO nanorods and metal nanoparticles or quantum dots is essential along with an optimal energy band alignment for realizing emission enhancement. The theoretical model presented also provides a direct method of quantifying the relative transition rate constants associated with various electronic transitions in ZnO and their change upon the incorporation of plasmonic nanoparticles. The results indicate that, while the presence of deep level defect states may facilitate the essential charge transfer process between ZnO and the plasmonic nanoparticles, their presence alone does not guarantee UV emission enhancement and strong plasmonic coupling between the two systems. The results offer clues to designing novel multicomponent systems with coupled plasmonic and charge transfer effects for applications in charge localization, energy harvesting, and luminescence enhancement, especially in electrically triggered nanophotonic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.