Abstract
The relationship between zinc mineral nutrition and plant growth-promoting bacteria (PGPB) is pivotal in enhancing agricultural productivity, especially in tropical regions characterized by diverse climatic conditions and soil variability. This review synthesizes and critically evaluates current knowledge regarding the synergistic interaction between zinc mineral nutrition and PGPB in tropical agricultural systems. Zinc is an essential and fundamental micronutrient for various physiological and biochemical processes in plants. Its deficiency affects plant growth and development, decreasing yields and nutritional quality. In tropical regions, where soil zinc availability is often limited or imbalanced, the PGPB, through different mechanisms such as Zn solubilization; siderophore production; and phytohormone synthesis, supports Zn uptake and assimilation, thereby facilitating the adverse effects of zinc deficiency in plants. This review outlines the impacts of Zn-PGPB interactions on plant growth, root architecture, and productivity in tropical agricultural systems. The positive relationship between PGPB and plants facilitates Zn uptake and improves nutrient use efficiency, overall crop performance, and agronomic biofortification. In addition, this review highlights the importance of considering indigenous PGPB strains for specific tropical agroecosystems, acknowledging their adaptability to local conditions and their potential in sustainable agricultural practices. It is concluded that Zn fertilizer and PGPBs have synergistic interactions and can offer promising avenues for sustainable agriculture, addressing nutritional deficiencies, improving crop resilience, and ensuring food security.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.