Abstract

The occurrence of frequent, extreme high temperatures affects agriculture and causes irreversible damage during the ripening period of grapes. Breeding high-temperature-tolerant varieties of grapes is the main way to deal with this challenge, thus necessitating research on the regulatory mechanism of high-temperature tolerance. Extreme high temperature causes the mismatch of proteins in the endoplasmic reticulum in plant cells and initiates the unfolded protein response (UPR). The transcription factor bZIP60 participates in the UPR process. In the present study, VvbZIP60 and VvbZIP60s (unconventional splicing of VvbZIP60) were cloned and expressed in a transgenic system to verify heat tolerance. VvbZIP60s was found to be a key gene in adapting to heat stress. VvbZIP60s/60u interacted with VvHSP83 as observed in two yeast hybrids, with bimolecular fluorescence complementation and pull-down assays. VvHSP83 is also a key gene for plants to adapt to heat stress by participating in the renaturation and degradation of denatured proteins under adversity, causing plants to resist high temperatures. This study provides a basis for analyzing the mechanism of high-temperature tolerance in grapes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call