Abstract
This study investigates the size-dependent dynamics of bubbles and their interaction with soft boundaries under various ultrasound (US) conditions. We found that bubble behavior is influenced by size, with smaller bubbles displaying reduced inertial motion in similar ultrasound environments. Detailed analyses of three bubble sizes (1.5 µm, 15 µm, and 150 µm) next to a soft 1 kPa boundary revealed distinct patterns in radial oscillation, bubble center displacement, and boundary deflection for different ultrasound frequencies (5 kHz − 4 MHz). The smallest bubble maintained a spherical shape, while the largest experienced significant shape changes, indicative of impending jet formation. Investigating interactions at various frequencies highlighted the collapse tendency of the larger bubbles, showcasing maximum radial amplitude, displacement, and bubble wall velocity around its natural frequency. The presence of a soft boundary minimally affected radial amplitude and velocity, while the bubble displacement was contingent on the soft boundary modulus. Furthermore, boundary responses demonstrated that softer boundaries experienced less stress during bubble oscillations, exhibiting sharper peaks at resonance frequencies for larger bubbles. These findings provide valuable insights into optimizing ultrasound conditions for a variety of applications, highlighting the influence of bubble size and boundary properties on outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.