Abstract

Alignment of tropoelastin molecules during the process of elastogenesis is thought to require fibrillin-containing microfibrils. In this study, we have demonstrated that amino-terminal domains of two microfibrillar proteins, fibrillin-1 and fibrillin-2, interact with tropoelastin in solid phase binding assays. The tropoelastin-binding site was localized to a region beginning at the glycine-rich and proline-rich regions of fibrillin-2 and fibrillin-1, respectively, and continuing through the second 8-cysteine domain. Characterization of the binding requirements using the fibrillin-2 construct found that a folded, secondary structure was necessary for binding. Furthermore, binding between tropoelastin and fibrillin was mediated by ionic interactions involving the lysine side chains of tropoelastin. The importance of the lysine side chains was corroborated by the finding that the fibrillin-2 construct did not bind to mature elastin, whose lysine side chains have been modified to form cross-links. Interestingly, there was no interaction between the fibrillin constructs and tropoelastin in solution phase, suggesting that binding of tropoelastin to a solid substrate exposes a cryptic binding site. These results suggest that fibrillin plays an important role in elastic fiber assembly by binding tropoelastin and perhaps facilitating side chain alignment for efficient cross-linking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.