Abstract

The effect of the fluorophore trans-parinaric acid on the structure of lipid bilayer was studied and compared with the effect of other ‘perturbants’. These include commonly used fluorophores (diphenylhexatriene, heptadecylhydroxycoumarin, cis-parinaric acid and two fatty acids, palmitic and oleic acids). Differential scanning calorimetry (DSC) and proton nuclear magnetic resonance techniques were used to evaluate structural changes in the lipid bilayers. The thermodynamic parameters of dipalmitoylphosphatidylcholine multilamellar vesicles obtained from the DSC thermograms suggest that trans-parinaric acid differs from the other ‘perturbants’- trans-Parinaric acid has the most pronounced impact on the T m, the width ( ΔT 1 2 ) and the index of asymmetry of the main gel to liquid crystalline phase transition without any effect on its transition, ΔH. The presence of trans-parinaric acid in the lipid bilayer of dimyristoylphosphatidylcholine small unilamellar vesicles influences the chemical shift difference between the choline protons of phosphatidylcholine molecules present in the two leaflets of the vesicle bilayer ( ΔδH). This suggests that trans-parinaric acid affects the head group packing in the bilayer. Its main effect is abolishing the major alterations in head group packing that occur through the phase transition. The above data indicate that trans-parinaric acid is concentrated in the gel phase domains, whereby it stabilizes the phase separation between the gel and liquid crystalline phases, probably by affecting lipid molecules present in the boundary regions between these two domain types.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.