Abstract

In present study, aerodynamics of a NACA4412 wings with aspect ratio of 1 and 3 was considered experimentally at Reynolds numbers of 2.5 × 104, 5 × 104 and 7.5 × 104. Studies for AR = 1 wing showed that stall was delayed and extra (vortex) lift was obtained, because separation bubble got smaller in both chordwise and spanwise axes with effect of wing-tip vortices. Oil-flow experiments at higher angles of attack clarified the reason for vortex lift obtained from AR = 1 wing. However, there was an increase in drag coefficient as well as vortex lift, and stall delayed due to tip vortex. Turbulence intensity distributions pointed out location of the transition to turbulence; Reynolds stress and turbulence kinetic energy distributions indicated shear layer. Furthermore, in experiments of AR = 3 wing, the viscous forces and leading edge vortices were effective at Re = 2.5 × 104 and Re = 5 × 104, but flow over the wing at Re = 7.5 × 104 acted as a 2D flow. After α = 12°, bubble burst and stall consisted abruptly because effectiveness of 3D flow decreased over wing. Strouhal (St) numbers of vortex shedding frequencies in wake of AR = 3 wing had a certain difference from St = 0.17/sinα curve at lower angle of attack (α = 0° − 10°) due to separation bubble, but AR = 1 wings showed that St numbers were near St = 0.17/sinα curve.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call