Abstract

Titanium dioxide (TiO2) nanoparticles (NPs) are the most widely used nanomaterials and their expanding use raises concerns about their impacts on soil ecosystems and functioning. The present study evaluates the potential impacts of TiO2 NPs applied at low doses (0, 1.0, 2.5, 5.0, 10.0 and 20.0 mg L−1) on soil chemical properties including the macro and micronutrient contents, microbial population and enzyme activities in rhizosphere soil of mung bean crop at different time intervals (7, 14, 28 and 56 days). A quantitative RT-PCR study was also performed to study the relative change in the gene expression of ammonia oxidizer and nitrogen fixers upon TiO2 NP supplementation. An increase in soil nutrient content viz., available N, P, Cu, Fe, Mn, nitrate-N and ammonical-N was observed with NP application except available K and Zn content. The TiO2 NPs stimulated the growth of soil microflora at low concentrations while an inhibitory effect was recorded at high concentrations. The soil fungi and actinobacteria emerged as the most sensitive groups of soil microbes towards TiO2 NP exposure exhibiting detrimental impacts on their growth at all concentrations. Similarly, the soil enzyme activities enhanced till TiO2 NPs (10.0 mg L−1) which was followed by decrease at higher concentrations. The qRT-PCR study showed that the ammonia oxidizers were more affected by TiO2 NPs application than nitrogen fixers. These findings suggest that TiO2 NPs can be used as stimulators of soil nutrients and soil microbial dynamics at low concentrations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call