Abstract

Semiconductor nanocrystals and room-temperature ionic liquids have been extensively investigated as promising materials for applications in the field of energy conversion and storage. Titanium dioxide nanoparticles are unquestionably the most used material for the fabrication of sensitized solar cells and batteries, in which room-temperature ionic liquids have been used to replace conventional electrolytes. The study of their interactions is, therefore, undoubtedly of large scientific and technological interest for their implementation in innovative energy devices. Here, a spectroscopic study focused on the interactions, in terms of charge and/or energy transfer, between titanium dioxide nanorods and imidazolium-based ionic liquids is reported. Anatase TiO2 rodlike nanocrystals, synthesized by means of a colloidal synthetic procedure, have been dispersed at increasing loading in a series of dialkyl-substituted imidazolium-based ionic liquids, characterized by different anions and alkyl chain lengths. Time...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.