Abstract

The processing of polymers for blood contacting devices can have a major influence on surface properties. In this study, we fabricated poly(ether imide) (PEI) membranes and films to investigate the effects of the processing on physicochemical surface properties by atomic force microscopy (AFM), scanning electron microscopy, contact angle as well as zeta potential measurements. A static platelet adhesion test was performed to analyze the thrombogenicity of both devices. While contact angle measurements showed similar levels of hydrophobicity and zeta potential values were equivalent, mean surface roughness as well as surface energies in the dispersive part were found to be increased for the PEI membrane. The static platelet adhesion test showed a significantly decreased number of adherent platelets per surface area on the PEI film (178.98 ± 102.70/45000 μm2) compared to the PEI membrane (504 ± 314.27/45000μm2) and, consequently, revealed evidence for higher thrombogenicity of the PEI membrane. This study shows that processing can have a significant effect on platelet adhesion to biomaterials, even though, molar weight was identical. Thrombogenicity of polymer-based cardiovascular devices, therefore, have to be evaluated at the final product level, following the entire processing procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.