Abstract
The structure of the stellar atmosphere irradiated by an X-ray source is calculated. On the basis of these numerical calculations an approximate theory of the X-ray reprocessing is formulated. The interaction of X-rays with the stellar atmosphere induces a considerable stellar wind. However, the main part of the X-ray energy is reemitted. The optical appearances of the close binary system including an X-ray source are discussed. The light curve of such a system is obtained. The mass-loss rate of a star with the size close to that of its Roche lobe is evaluated in the isothermal approximation. Most likely, the accretion of matter on to a neutron star, or a black hole, is the cause of the X-ray luminosity. The accreting matter is supplied with the mass outflow from the normal component induced by X-rays. The X-ray luminosity is shown to have an upper limit stipulated by the outflow saturation. The model of HZ Her=Her X1 system is constructed which accounts for the observed light curve. The optical appearances of the system are due to the X-ray heating of the face of the X-ray source area of the normal star. The radiation of this hot area is partly reflected by the surface of the disc around the X-ray source. The thin disc is formed by the accretion of matter by the X-ray source. The effective reflection of hard X-rays (hv∼15–30 keV) by the stellar surface is considered. This phenomenon makes it possible to detect those X-ray pulsars whose beam does not intercept the Earth. The model of Sco X1 as a black hole in a close binary system is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.