Abstract

The observations of the magnetometer/electron reflectometer (MAG/ER) investigation onboard the Mars Global Surveyor (MGS) have greatly contributed to improve our understanding of the interaction of the solar wind with Mars. These observations established conclusively that a global dynamo-generated magnetic field does not exist at Mars, and that the interaction with solar wind is of the atmospheric type. This article reviews the most important results obtained from MGS MAG/ER on the study of two major features in the Mars solar wind interaction. The first feature is the occurrence of large-amplitude, highly coherent waves at the proton cyclotron frequency in the region upstream from the Martian bow shock. The second feature is the magnetic pileup boundary (MPB), a well-defined plasma boundary inside of which the planetary exospheric ions outnumber the solar wind ions. The study of these two elements is crucial to characterize the properties of the Martian exosphere. In addition, the occurrence of an MPB at comets and Venus reveals common processes to all these unmagnetized atmospheric bodies in spite of their different physical nature and characteristic scales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.