Abstract

The action of the radiation of the ytterbium-fiber laser (λ = 1.07 μm) on the Nd3+Y2O3 target with nonuniform transparency in the course of the nanopowder production is studied. It is demonstrated that the laser irradiation leads to an extremely rough surface with the stalagmite roughness due to a relatively large melting depth. The resulting powder consists of two fractions. The first fraction (99% of the total mass of the powder) consists of nanoparticles with a mean size of 29 nm (BET data). The second fraction consists of micro- and submicroparticles that represent circular drops condensed from the melt and shapeless debris of the target. The peaks on the diameter distribution of the drops at 2, 8, and 80 μm are determined by different effects. The laser heating of the inhomogeneous target with the nonlinear refractive index is numerically analyzed. It is demonstrated that the melting of the target is initiated at a mean laser power of 700 W, a power density of 5.6 × 105 W/cm2, and an irradiation time of 150 μs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call