Abstract

High-sulfur bituminous coal containing 4.17 wt% of pyritic sulfur and the pyrite concentrate separated from this coal were used to examine the interaction between pyritic sulfur and the organic part of coal during pyrolysis. At 330–500°C, as a result of the reaction of sulfur derived from pyrite decomposition with the coal organic matrix, a significant increase in the organic sulfur in the char is observed, from 1.47 to 3.17 wt%. The enrichment in sulfur is most pronounced between 400 and 450°C, corresponding to the most intensive thermal degradation of this coal. At these temperatures, some of the pyrite is converted to pyrrhotite. The organic sulfur content is a maximum at ∼ 500°C, when all the pyrite is reduced to pyrrhotite. The pyrite in the coal undergoes conversion to troilite via pyrrhotite at lower temperatures than does pure pyrite. Compared with the thermal decomposition of pure pyrite, the pyrite present in coal starts to decompose at a lower temperature (330 vs. 400°C). The conversion to troilite also proceeds to completion at a much lower temperature. This demonstrates that the decomposition of pyrite is markedly affected by the presence of the organic coal substance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call