Abstract

The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) functions in splicing group I introns by promoting the formation of the catalytically active structure of the intron’s catalytic core. Previous studies suggested a model in which the protein binds first to the intron’s P4-P6 domain, and then makes additional contacts with the P3-P9 domain to stabilize the two domains in the correct relative orientation to form the intron’s active site. Here, we analyzed the interaction of CYT-18 with a small RNA (P4-P6 RNA) corresponding to the isolated P4-P6 domain of the N. crassa mitochondrial large subunit ribosomal RNA intron. RNA footprinting and modification-interference experiments showed that CYT-18 binds to this small RNA around the junction of the P4-P6 stacked helices on the side opposite the active-site cleft, as it does to the P4-P6 domain in the intact intron. The binding is inhibited by chemical modifications that disrupt base-pairing in P4, P6, and P6a, indicating that a partially folded structure of the P4-P6 domain is required. The temperature-dependence of binding indicates that the interaction is driven by a favorable enthalpy change, but is accompanied by an unfavorable entropy change. The latter may reflect entropically unfavorable conformational changes or decreased conformational flexibility in the complex. CYT-18 binding is inhibited at ⩾125 mM KCl, indicating a strong dependence on phosphodiester-backbone interactions. On the other hand, Mg2+ is absolutely required for CYT-18 binding, with titration experiments showing ∼1.5 magnesium ions bound per complex. Metal ion-cleavage experiments identified a divalent cation-binding site near the boundary of P6 and J6/6a, and chemical modification showed that Mg2+ binding induces RNA conformational changes in this region, as well as elsewhere, particularly in J4/5. Together, these findings suggest a model in which the binding of Mg2+ near J6/6a and possibly at one additional location in the P4-P6 RNA induces formation of a specific phosphodiester-backbone geometry that is required for CYT-18 binding. The binding of CYT-18 may then establish the correct structure at the junction of the P4/P6 stacked helices for assembly of the P3-P9 domain. The interaction of CYT-18 with the P4-P6 domain appears similar to the TyrRS interaction with the D-/anticodon arm stacked helices of tRNATyr.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call