Abstract

To determine which functional groups of bases within the grooves of double-helical DNA interact with the HpaI endonuclease, we have employed chemically synthesized octanucleotides containing base analogues. The 5-methyl group of thymine was probed as a contact between the HpaI endonuclease and its recognition sequence by using the oligonucleotides d(G-G-T-T-A-A-C-C), d(G-G-T-U-A-A-C-C), and d(G-G-T-U(Br)-A-A-C-C). The 2-amino group of guanine was probed as a contact for the HpaI endonuclease by using the octanucleotide d(G-I-T-T-A-A-C-C). The HpaI endonuclease cleaves octanucleotides d(G-G-T-T-A-A-C-C) and d(G-G-T-B-A-A-C-C) according to Michaelis-Menten kinetics. However, both the Km and turnover number for d(G-G-T-B-A-A-C-C) were severalfold lower than those for cleavage of d(G-G-T-T-A-A-C-C). In addition, d(G-G-T-U-A-A-C-C) was not cleaved by HpaI endonuclease, suggesting that the 5-methyl group of thymine is a contact between the HpaI endonuclease and its recognition sequence. d(G-I-T-T-A-A-C-C) was not cleaved by the HpaI endonuclease which may be due in part to the low thermal stability of the duplex. Nevertheless, our results suggest that the 2-amino group of guanine is a contact for the HpaI endonuclease. A phosphate group 5' external to the HpaI recognition sequence has been identified as a contact between the HpaI endonuclease and DNA. The HpaI endonuclease cleaved 5'-phosphorylated octanucleotide 30-fold faster than unphosphorylated octanucleotide. In addition, the Km of the d(G-G-T-T-A-A-C-C) was 8000-fold higher than the Km of the phage f1 RFI DNA, suggesting that the octanucleotide is too short to take advantage of the entire DNA binding site of the enzyme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.