Abstract

The interaction of the chlorite-based drug solution WF10 with human oxyhemoglobin and oxidized hemoglobin forms was investigated monitoring the corresponding spectral changes in heme states. The chlorite component of WF10 converts oxyhemoglobin into methemoglobin with a rate of 35.4 M−1s−1. Methemoglobin is also formed upon the interaction of ferryl hemoglobin and WF10/chlorite. The rate of this interconversion depends on the oxidation state of ferryl hemoglobin. This rate is 114 M−1s−1, when ferryl hemoglobin was generated upon reaction of oxyhemoglobin and hydrogen peroxide. A considerable higher rate (6600 M−1s−1) is measured between the chlorite components of WF10 and ferryl hemoglobin after formation of the latter species from methemoglobin. WF10/chlorite inactivates also methemoglobin as evidenced by the continuous decrease of the Soret band and all other absorbances with a rate of 8.3 M−1s−1. In all interconversions, the chlorite component of WF10 was the active principle as shown in experiments applying pure chlorite at the same concentration as in WF10. Thus, WF10 is able to diminish efficiently the yield of cytotoxic hemoglobin species that might appear after excessive hemolysis of red blood cells under pathologic situations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.