Abstract

The chemokine CXCL12 has a decisive role in tumor progression by mediating pro-angiogenic and pro-metastatic effects through its receptor CXCR4. The CXCL12 pathway is connected with another chemokine, CXCL11, through its second receptor CXCR7. CXCL11 also binds to the CXCR3 receptor. CXCL11 function in tumor angiogenesis is likely receptor dependent because CXCR3 predominantly mediates angiostatic signals whereas CXCR7 mediated signaling is rather angiogenic. We therefore studied the interaction of CXCL12 and CXCL11 in an in vivo model of colorectal cancer metastasis. GFP-transfected CT26.WT colorectal cancer cells were implanted into the dorsal skinfold chamber of syngeneic BALB/c mice. The animals received either peritumoral application of CXCL11 or intraperitoneal injections with neutralizing antibodies against CXCL11, CXCL12 or both. Tumor growth characteristics, angiogenesis, cell migration, invasive tumor growth, tumor cell proliferation and apoptosis were studied by intravital fluorescence microscopy and immunohistochemistry during an observation period of 14days. Local exposure to CXCL11 significantly stimulated tumor growth compared to controls and enhanced invasive growth characteristics without affecting tumor angiogenesis and tumor cell migration. Neither CXCL11 nor CXCL12-blockade had a significant impact on tumor growth and angiogenesis, whereas the combined neutralization of CXCL11 and CXCL12 almost completely abrogated tumor vessel formation. As a consequence, tumor growth and invasive growth characteristics were reduced compared to the other groups. The results of the present study underline the interaction of CXCL12 and CXCL11 during tumor angiogenesis. The combined blockade of both signaling pathways may provide an interesting anti-angiogenic approach for anti-tumor therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.