Abstract
BiP is an Hsp70 homologue found in the endoplasmic reticulum of eukaryotic cells. Like other Hsp70 chaperones, BiP interacts with its substrate proteins in an ATP-dependent manner. The functional analysis has so far been performed mainly with short, synthetic peptides. Here, we present an experimental system that allows to study the partial reactions of the BiP chaperone cycle for a natural substrate protein domain in its soluble, stably unfolded conformation. This unfolded antibody domain forms a binary complex with BiP in the absence of ATP. The dissociation of the BiP dimer seems to be the rate-limiting step in this reaction. The BiP–C H3 complexes dissociate rapidly in the presence of ATP. The affinity for BiP-binding peptides and the non-native antibody domain was determined to be similar, suggesting that only the peptide binding site is involved in these interactions. Furthermore, these results imply that, also in the context of the antibody domain, an extended peptide sequence is recognized. However, the accessibility of the BiP-binding site in the non-native protein seems to influence the kinetics of complex formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.