Abstract

The Escherichia coli dinB gene encodes DNA polymerase (pol) IV, a protein involved in increasing spontaneous mutations in vivo. The protein-coding region of DINB1, the human ortholog of DNA pol IV, was fused to glutathione S-transferase and expressed in insect cells. The purified fusion protein was shown to be a template-directed DNA polymerase that we propose to designate polκ. Human polκ lacks detectable 3′ → 5′ proofreading exonuclease activity and is not stimulated by recombinant human proliferating cell nuclear antigen in vitro. Between pH 6.5 and 8.5, human polκ possesses optimal activity at 37 °C over the pH range 6.5–7.5, and is insensitive to inhibition by aphidicolin, dideoxynucleotides, or NaCl up to 50 mm. Either Mg2+ or Mn2+ can satisfy a metal cofactor requirement for polκ activity, with Mg2+ being preferred. Human polκ is unable to bypass a cisplatin adduct in the template. However, polκ shows limited bypass of an 2-acetylaminofluorene lesion and can incorporate dCTP or dTTP across from this lesion, suggesting that the bypass is potentially mutagenic. These results are consistent with a model in which polκ acts as a specialized DNA polymerase whose possible role is to facilitate the replication of templates containing abnormal bases, or possessing structurally aberrant replication forks that inhibit normal DNA synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.