Abstract
ABSTRACTThe properties of terahertz waves propagation in a homogeneous, magnetized, and collisional plasma are studied in this paper. We first theoretically calculate the reflectance and absorbance coefficients for terahertz waves passing through this region. Then, numerous simulations are conducted to investigate the influence of the plasma on the terahertz waves propagation. According to the results, the plasma density, collision frequency, and magnetic field play important roles in dielectric spectra, and then result in large impacts on the propagation with the variation of the plasma thickness, incident angle, and the gas pressure. The absorbance increases with the increase of plasma density, and the collision frequency. With respect to the collisional absorption and electron cyclotron resonance, the absorbance first increases to its maximum peak and then decreases as the wave frequency increases. When the plasma density increases, the peak value shifts to a higher frequency. Meanwhile, the plasma slab acts as the absorber or reflector with the variation of the gas pressure and the plasma thickness. These results provide supplementary information on the terahertz waves propagation in plasma and can serve as a theoretical basis for its application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.