Abstract

The interaction of the synthetic 21 amino acid peptide (AcE4K) with 1-oleoyl-2-[caproyl-7-NBD]- sn-glycero-3-phosphocholine membranes is used as a model system for the pH-sensitive binding of fusion peptides to membranes. The sequence of AcE4K (Ac-GLFEAIAGFIENGWEGMIDGK) is based on the sequence of the hemagglutinin HA2 fusion peptide and has similar partitioning into phosphatidylcholine membranes as the viral peptide. pH-dependent partitioning in the membrane, circular dichroism, tryptophan fluorescence, change of membrane area, and membrane strength, are measured to characterize various key aspects of the peptide–membrane interaction. The experimental results show that the partitioning of AcE4K in the membrane is pH dependent. The bound peptide inserts in the membrane, which increases the overall membrane area in a pH-dependent manner, however the depth of insertion of the peptide in the membrane is independent of pH. This result suggests that the binding of the peptide to the membrane is driven by the protonation of its three glutamatic acids and the aspartic acid, which results in an increase of the number of bound molecules as the pH decreases from pH 7 to 4.5. The transition between the bound state and the free state is characterized by the Gibbs energy for peptide binding. This Gibbs energy for pH 5 is equal to −30.2 kJ/mol (−7.2 kcal/mol). Most of the change of the Gibbs energy during the binding of AcE4K is due to the enthalpy of binding −27.3 kJ/mol (−6.5 kcal/mol), while the entropy change is relatively small and is on the order of 6.4 J/mol·K (2.3 cal/mol·K). The energy barrier separating the bound and the free state, is characterized by the Gibbs energy of the transition state for peptide adsorption. This Gibbs energy is equal to 51.3 kJ/mol (12.3 kcal/mol). The insertion of the peptide into the membrane is coupled with work for creation of a vacancy for the peptide in the membrane. This work is calculated from the measured area occupied by a single peptide molecule (220 Å 2) and the membrane elasticity (190 mN/m), and is equal to 15.5 kJ/mol (3.7 kcal/mol). The comparison of the work for creating a vacancy and the Gibbs energy of the transition state shows that the work for creating a vacancy may have significant effect on the rate of peptide insertion and therefore plays an important role in peptide binding. Because the work for creating a vacancy depends on membrane elasticity and the elasticity of the membrane is dependent on membrane composition, this provides a tool for modulating the pH for membrane instability by changing membrane composition. The insertion of the peptide in the membrane does not affect the membrane permeability for water, which shows that the peptide does not perturb substantially the packing of the hydrocarbon region. However, the ability of the membrane to retain solutes in the presence of peptide is compromised, suggesting that the inserted peptide promotes formation of short living pores. The integrity of the membrane is substantially compromised below pH 4.8 (threshold pH), when large pores are formed and the membrane breaks down. The binding of the peptide in the pore region is reversible, and the pore size varies on the experimental conditions, which suggests that the peptide in the pore region does not form oligomers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call