Abstract

The interaction of water vapor and sulfur dioxide (SO2) with single crystal cuprous oxide (Cu2O) surfaces of (100) and (111) termination was studied by photoelectron spectroscopy (PES) and density functional theory (DFT). Exposure to near-ambient pressures of water vapor, at 5 × 10–3 %RH and 293 K, hydroxylates both Cu2O surfaces with OH coverage up to 0.38 copper monolayers (ML) for (100) and 0.25 ML for (111). O 1s surface core level shifts indicate that the hydroxylation lifts the (3,0;1,1) reconstruction of the clean (100) surface. On both clean Cu2O terminations, SO2 adsorbs to unsaturated surface oxygen atoms to form SO3 species with coverage, after a saturating SO2 dose, corresponding to 0.20 ML on the Cu2O(100) surface and 0.09 ML for the Cu2O(111) surface. Our combined DFT and PES results suggest that the SO2 to SO3 transformation is largely facilitated by unsaturated copper atoms at the Cu2O(111) surface. SO3-terminated surfaces exposed to low doses of water vapor (≤100 langmuirs) in ultrahigh v...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call