Abstract

Sulfoglucuronyl carbohydrate (SGC) is expressed on several neural cell-adhesion molecules and on glycolipids. SGC and its binding protein, SBP-1 are developmentally regulated in the nervous system and have been implicated in regulating neurite outgrowth and cell-cell recognition during neuronal cell migration. To elucidate the role of interaction between SGC and SBP-1, microexplant cultures of postnatal day 5 rat cerebellum were employed. In explant cultures, SGC was localized primarily in the neuronal cell processes, neurofilaments, and dendrites that emerge from the core of the explants up to 90 microm, after 24 hr in culture. SGC was also present in the short astrocytic processes near the core of the explant. SBP-1 was localized mainly in the granule neuron cell bodies and faintly on cell plasma membranes and processes. Granule neurons, expressing SBP-1, migrated outward in close contact with the SGC bearing neuronal processes, suggesting interaction between SGC and SBP-1. The neurite outgrowth and cell migration were specifically and severely reduced, in dose-dependent manners, by anti-SGC (HNK-1) and anti-SBP-1 antibodies and sulfoglucuronyl glycolipid (SGGL). Other irrelevant antibodies and glycolipids had little effect. The results showed that SBP-1 was required for neurite outgrowth and that SGC-SBP-1 interaction was important for cell-cell recognition and cell migration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call