Abstract

The effects of sulfaphenazole, 1, on typical activities catalyzed by human cytochromes P450 of the 1A, 3A, and 2C subfamilies expressed in yeast were studied. 1 acts as a strong, competitive inhibitor of CYP 2C9 (K(i) = 0.3 +/- 0.1 microM); it is much less potent toward CYP 2C8 and 2C18 (K(i) = 63 and 29 microM, respectively) and fails to inhibit CYP 1A1, 1A2, 3A4, and 2C19. From difference visible spectroscopy experiments using microsomes of yeast expressing various human P450s, 1 selectively interacts only with CYP 2C9 with the appearance of a peak at 429 nm as expected for the formation of a P450 Fe(III)-nitrogenous ligand complex (Ks = 0.4 +/- 0.1 microM). Comparative studies of the spectral interaction and inhibitory effects of twelve compounds related to 1 with CYP 2C9 showed that the aniline function of 1 is responsible for the formation of the iron-nitrogen bond of the 429 nm-absorbing complex and is necessary for the inhibitory effects of 1. The study of two new compounds synthesized during this work, in which the N-phenyl group of 1 was replaced with either an ethyl group or a 3,4-dichlorophenyl group, showed that the presence of an hydrophobic substituent at position 1 of the pyrazole function of 1 is required for a strong interaction with CYP 2C9. A model for the binding of 1 in the CYP 2C9 active site is proposed; that takes into account three major interactions that should be at the origin of the high-affinity and specific inhibitory effects of 1 toward CYP 2C9: (i) the binding of its nitrogen atom to CYP 2C9 iron, (ii) an ionic interaction of its SO2N- anionic site with a cationic residue of CYP 2C9, and (iii) an interaction of its N-phenyl group with an hydrophobic part of the protein active site.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call