Abstract
The interaction of a Ti + 10 Mo titanium alloy, which serves as a matrix in a tribological material, with calcium fluoride CaF2 and boron nitride BN, which play the role of a solid lubricant, during their heating and sintering in a vacuum of 10–3 Pa at 1150°C for 15 and 120 min, respectively, has been studied. In the heating of a Ti + 10 Mo + CaF2 model sample for 15 min and sintering of Ti + 10 Mo + CaF2 CAM1 for 120 min, calcium fluoride does not interact with the Ti + 10 Mo matrix and does not change its composition and structure; a transition layer between the matrix and solid lubricant does not form. Thus, calcium fluoride preserves its initial lubricating properties. In the sintering of Ti + 10 Mo + 13 CaF2 CAM1 for 120 min, a composite antifriction material with a microheterogeneous structure is synthesized. Its structure is a mixture of solid solutions of molybdenum in α- and β-titanium, which has a body-centered cubic lattice and face-centered hexagonal lattice, in which calcium fluoride CaF2 is distributed in the form of inclusions. In the heating of a Ti + 10 Mo + BN model sample for 15 min and sintering of Ti + 10 Mo + BN CAM2 for 120 min, the interaction of the Ti+10Mo alloy with boron nitride BN occurs to form a transition layer with the phase composition α-TiMo + TiB + TiN + BN. In the sintering of Ti + 10 Mo + BN CAM2 for 120 min, a composite material with a microheterogeneous structure is synthesized. Its structure is a solid solution of Mo in α-Ti with a face-centered hexagonal lattice, strengthened by products of interaction of titanium with nitrogen and boron, TiN and TiB, in which boron nitride BN is distributed in the form of inclusions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.