Abstract

Stomatal responses to ABA and CO2 were investigated in Arabidopsis thaliana (L.) Heynh. wild-type and ABA insensitive mutants (abi1-1, abi2-1, abi1-1abi2-1) at the whole plant and at the isolated epidermis levels. In wild-type plants, feeding roots with ABA (1–50 µM) triggered a rapid drop in leaf conductance which levelled off during the following photoperiods, and strongly inhibited the increase in conductance induced by light. The rapid response was strongly inhibited in abi1-1, abi2-1 and abi1-1abi2-1 double mutants, but a residual long-term decrease in leaf conductance was still observed. In wild-type plants, exogenous ABA strongly enhanced the response to CO2 removal. Conversely, in the absence of CO2 the effect of ABA was drastically reduced in epidermal strip experiments. These results reveal a strong interaction between sensing of ABA and CO2 in stomata of A. thaliana. Despite an initially wide stomatal aperture in abi-1, abi-2 and double mutant plants, their stomatal responses to light and CO2 removal were half those of wild-type plants. Moreover these responses were totally independent of the presence of ABA, suggesting that ABI1 and ABI2 are either directly involved in the interaction between the two signalling pathways or, alternatively located upstream of this point of interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.