Abstract

The interaction of sodium N-lauroylsarcosinate (SLS) with N-cetylpyridinium chloride (CPC) and N-dodecylpyridinium chloride (DPC) was investigated in aqueous mixtures. A strong interaction between the anionic and cationic surfactants was observed. The interaction parameter, β was determined for a wide composition range and was found to be negative. The mixed systems were found to have much lower critical micelle concentration ( cmc) and surface tension at cmc. The surfactant mixtures exhibit synergism in the range of molar fractions investigated. The self-assembly formation in the mixtures of different compositions and total concentrations were studied using a number of techniques, including surface tension, fluorescence spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), confocal fluorescence microscopy (CFM). Thermodynamically stable unilamellar vesicles were observed to form upon mixing of the anionic and cationic surfactants in a wide range of composition and concentrations in buffered aqueous media. TEM as well as DLS measurements were performed to obtain shape and size of the vesicular structures, respectively. These unilamellar vesicles are stable for periods as long as 3 months and appear to be the equilibrium form of aggregation. Effect of pH, and temperature on the stability was investigated. The vesicular structures were observed to be stable at pH as low as 2.0 and at biological temperature (37 °C). In presence of 10 mol% of cholesterol the mixed surfactant vesicles exhibited leakage of the encapsulated calcein dye, showing potential application in pH-triggered drug release.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call