Abstract
Several techniques were used to investigate the possibility that smooth muscle tropomyosin interacts with smooth muscle myosin. These experiments were carried out in the absence of actin. The Mg2+-ATPase activity of myosin was activated by tropomyosin. This was most marked at low ionic strength but also occurred at higher ionic strength with monomeric myosin. For myosin and HMM, the activation of Mg2+-ATPase by tropomyosin was greater at low levels of phosphorylation. There was no detectable effect of tropomyosin on the Mg2+-ATPase activity of S1. The KCl dependence of myosin viscosity was influenced by tropomyosin, and in the presence of tropomyosin, the 6S to 10S transition occurred at lower KCl concentrations. From the viscosity change, an approximate stoichiometry of 1:1 tropomyosin to myosin was estimated. The phosphorylation dependence of viscosity, which reflects the 10S-6S transition, also was altered in the presence of tropomyosin. An interaction between myosin and tropomyosin was detected by fluorescence measurements using tropomyosin labeled with dansyl chloride. These results indicate that an interaction occurs between myosin and tropomyosin. In general, the interaction is favored at low ionic strength and at low levels of phosphorylation. This interaction is not expected to be competitive with the formation of the actin-tropomyosin complex, but the possibility is raised that a direct interaction between myosin and tropomyosin bound to the thin filament could modify contractile properties in smooth muscle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.