Abstract
An increase in the radiation yield of paramagnetic centers in H2SO4 + nanotubes (NTs) solutions was evidence of the sensitizing influence of NTs on the low-temperature radiolysis of sulfuric acid, that is, on excitation energy and charge transfer. Under the conditions selected, the influence of NTs extended to distances of 100–300 nm. The presence of NTs also influenced the interstice nanodiffusion of atomic hydrogen by decreasing kinetic heterogeneity of the vitrified matrix surrounding NTs. No chemical interaction between atomic hydrogen and carbon NTs was observed at 77–120 K. The diffusion of radical-base anions occurred following the vacancy mechanism and was independent of the presence of NTs. Nanotubes did not form a separate phase as sulfuric acid solutions were cooled to 77 K. The transition from the vitreous to supercooled liquid state was observed as irradiated and nonirradiated solutions were heated to 175 K; no phase transitions occurred over the temperature range 180–300 K. For the first time, substantial changes in the electronic spectra of sulfuric acid solutions of NTs with time were observed: an intense additional absorption band at 320 nm appeared in the spectra in several days. This band was supposedly related to the formation of complexes between H2SO4 molecules and the surface of NTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.