Abstract

Glasses with metallic and semi-conductive nano-particles appear to be perspective non-linear and luminescent materials of photonics. It was shown in theory that composite optical materials containing semi-conductive CdS-core with Ag shell (or vice versa) are optimal for enhancement of non-linear Kerr effect. Interaction of such an ensemble of particles leads to the forming of Ag island structures on the CdS particle, and formation of acanthite Ag2S on the two phases border (CdS-Ag) is minimal. In glasses synthesis of CdS quantum dots occurred due to thermal treatment close to glass transition temperature; introduction of silver was realized by low-temperature ion exchange (LIE). The main object of this work is investigation of Ag+-LIE effect on the growth of CdS nano-particles. Two glasses were explored in this work: without CdS (glass 1) and with CdS (glass 2), processed by LIE at the temperature of 320°С for 10, 20 and 30 minutes and subsequent heat treatment at temperatures of 410°С and 420°С. In case of glass 1, intensive luminescence appears as a result of LIE, and subsequent heat treatment results in surface resonance at λ=410 nm. In case of glass 2, absorbance spectra change appears that is specific for formation of acanthite and weak luminescence shifting to long-wavelength region (from 550 to 700 nm) as a result of applying LIE and heat treatment. It indicates the growth of CdS quantum dots. Experiment has shown that quantum efficiency increases to 70% for glass 2 containing CdS quantum dots without LIE, while glass that contains silver shows steep decrease of quantum efficiency to 0%. That decrease is caused by formation of acanthite Ag2S on the surface of CdS quantum dot.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.