Abstract

This paper investigates through experiment and finite element modelling, the interaction and mode conversion phenomenon of SH0 and SH1 guided wave modes on a metal plate with machined wall thinning. Quantitative analysis was performed by calculating the reflection and transmission coefficients at the leading and trailing linearly tapered edges, for incident SH0 and SH1 modes. Several geometries were evaluated by varying the taper length and depth. Experiments were performed with periodic permanent magnet array EMATs as transmitters and receivers, generating a single SH mode, whilst both SH0 and SH1 are received. Experimental and numerical data show good agreement, revealing that the interaction of SH guided waves with such defects is complex when mode conversion arises. The values of the reflection and transmission coefficients are non-monotonic along the thinning depth and edge angle ranges. The quantitative results provide insight into the capabilities and limitations of guided SH wave measurements for simple corrosion type defects, indicating that with current capabilities, inspection of real defects will be limited to screening type measurements rather than detailed quantification of the defect region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call