Abstract

Theoretical and experimental investigations were made of the frequency of relaxation oscillations and of the operational dynamics of a solid-state ring laser when the frequency of self-modulation oscillations was varied within a wide range by altering one of the feedback coefficients of counterpropagating waves. The generally accepted formula for the relaxation frequency ωr = [(ω/Q) η/T1]1/2 is valid only in the limited range of self-modulation oscillation frequencies; here, (ω/Q) is the cavity bandwidth, η is the excess above the pumping threshold, and T1 is the relaxation time of the population inversion. A strong interdependence of the frequencies of self-modulation and relaxation oscillations, as well as mutual locking of these frequencies in the region of a parametric resonance were observed. Period doubling of self-modulation oscillations and dynamic chaos were investigated in the region of a parametric resonance between self-modulation and relaxation oscillations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.