Abstract

The activation of big-conductance K(Ca) channels in vascular smooth muscle cells by carbon monoxide (CO) has been demonstrated previously. One specific target of CO on K(Ca) channel proteins is the histidine residue. The roles of other amino acid residues on the functionality of K(Ca) channels, as well as their reactions to CO, have been unclear. In the present study, the cell-free single channel recording technique was used to investigate the chemical modification of K(Ca) channels by CO and other chemical agents. The modification of negatively charged carboxyl groups and the epsilon -amino group of lysine did not affect the open probability, but decreased single-channel conductance of K(Ca) channels. When sulfhydryl groups of cysteine were modified with N-ethylmaleimide, the open probability of K(Ca) channels was decreased, but single-channel conductance was not affected. None of the above chemical modifications affected the CO-induced increase in the open probability of K(Ca) channels. However, N-ethylmaleimide treatment reduced the stimulatory effect of nitric oxide (NO) on K(Ca) channels. Finally, pretreatment of smooth muscle cells with NO abolished the effects of subsequently applied CO on K(Ca) channel proteins. Our study demonstrates that CO and NO acted on different amino acid residues of K(Ca) channel proteins. The interaction of CO and NO determines the functional status of K(Ca) channels in vascular smooth muscle cells

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call