Abstract

BackgroundRecent COVID-19 outbreak has prompted the search of novel therapeutic agents to treat the disease. The initial step of the infection involves the binding of the virus through the viral spike protein with the host angiotensin converting enzyme 2 (ACE2). In this study, the interaction of some ACE or ACE2 inhibitors and their analogues as well as selected compounds with the viral spike protein as a strategy to hinder viral-ACE2 interaction were investigated. SARS-CoV-2 spike protein as well as the ligands were retrieved from protein databank and ChEBI database respectively. The molecules were prepared before initiating the virtual screening using PyRx software. Discovery studio was used to further visualize the binding interactions between the compounds and the protein.ResultsThe ACE inhibitors and their analogues fosinopril (1-), fosinopril and moexipril have the best binding affinity to the protein with binding energies < − 7.0 kcal/mol while non-flavonoid stilben-4-ol binds with free binding energy of − 7.1 kcal/mol. Others compounds which belong to either the flavonoids, terpenes and alkaloid classes also have binding energies < − 7.0 kcal/mol. Such high binding energies were enhanced via hydrogen bond (h-bond) interactions in addition to other interactions observed between the compounds and the amino acid residues of the protein.ConclusionsThe ACE inhibitors and their analogues as well as the selected compounds could serve as inhibitors of the spike protein as well as lead in drug discovery processes to target the SARS-CoV-2 virus.

Highlights

  • Recent COVID-19 outbreak has prompted the search of novel therapeutic agents to treat the disease

  • The observed symptoms of COVID-19 occur as a result of the binding interaction between the virus spike protein and the host Angiotensin Converting Enzyme 2 (ACE2) receptors [4] located on the alveolar cells surfaces in the lungs [5]

  • We investigated the binding and interaction of ACE or angiotensin converting enzyme 2 (ACE2) inhibitors and their analogues as well as, flavonoids, non-flavonoid phenolics, terpenes and alkaloids available in Chemical Entities of Biological Interest (ChEBI) with the SARS-CoV-2 spike protein using molecular docking

Read more

Summary

Introduction

Recent COVID-19 outbreak has prompted the search of novel therapeutic agents to treat the disease. The observed symptoms of COVID-19 occur as a result of the binding interaction between the virus spike protein and the host Angiotensin Converting Enzyme 2 (ACE2) receptors [4] located on the alveolar cells surfaces in the lungs [5]. This process facilitated the entry of the virus into the infected host cell and blocking the SARS-CoV-2 S protein could prevent.

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.