Abstract

A distinguishing feature of Archaeal plasma membranes is that their phospholipids contain ether-links, as opposed to bacterial and eukaryotic plasma membranes where phospholipids primarily contain ester-links. Experiments show that this chemical difference in headgroup-tail linkage does produce distinct differences in model bilayer properties. Here we examine the effects of salt on bilayer structure in the case of an ether-linked lipid bilayer. We use molecular dynamics simulations and compare equilibrium properties of two model lipid bilayers in NaCl salt solution – POPC and its ether-linked analog that we refer to as HOPC. We make the following key observations. The headgroup region of HOPC “adsorbs” fewer ions compared to the headgroup region of POPC. Consistent with this, we note that the Debye screening length in the HOPC system is ∼ 10% shorter than that in the POPC system. Herein, we introduce a protocol to identify the lipid-water interfacial boundary that reproduces the bulk salt distribution consistent with Gouy-Chapman theory. We also note that the HOPC bilayer has excess solvent in the headgroup region when compared to POPC, coinciding with a trough in the electrostatic potential. Waters in this region have longer autocorrelation times and smaller lateral diffusion rates compared to the corresponding region in the POPC bilayer, suggesting that the waters in HOPC are more strongly coordinated to the lipid headgroups. Furthermore, we note that it is this region of tightly coordinated waters in the HOPC system that has a lower density of Na+ ions. Based on these observations we conclude that an ether-linked lipid bilayer has a lower binding affinity for Na+ compared to an ester-linked lipid bilayer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.