Abstract

To evaluate phytohormones effects on stomatal conductance, chlorophyll fluorescence, membrane stability, relative water content and chlorophyll content under salinity, a factorial experiment with 4 replicates was conducted. Treatments were salinity (0, 3.5 and 7 dS/m), phytohormones (control, gibberellic acid and abscisic acid) and wheat cultivars (Gascogen, Zagros, and Kuhdasht). Results showed that a high level of salinity increased chlorophyll fluorescence and relative water content, while membrane stability, chlorophyll content, and stomatal conductance were decreased. Abscisic acid treatment had more effective role in membrane stability. Although membrane stability was much more under gibberellic acid treatment, restoration of membrane stability was considerable under abscisic acid treatment for Gascogen and Kuhdasht cultivars. Spraying of gibberellic acid induced the highest chlorophyll content in the three salinity levels and all of the cultivars. The maximum amount of stomatal conductance was achieved under gibberellic acid treatment. Abscisic acid caused less chlorophyll fluorescence in comparison to gibberellic acid. About relative water content, abscisic acid was effective in high salinity levels so that it caused stomatal closure, which reduced water loss and maintained turgor in plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.