Abstract

Ribosome recycling factor (RRF), in concert with elongation factor EF-G, is required for disassembly of the post-termination complex of a ribosome after the release of polypeptides. How RRF dissociates the complex has long been puzzling. Crystal structures of RRF molecules have been solved recently and shown to mimic a transfer RNA (tRNA) shape, which prompted us to examine whether RRF binds to the ribosome as tRNA does. The formation of ribosome complexes on the surface-coupled RRF and elongation factor EF-G of Escherichia coli was monitored in real time with a BIACORE 2000 instrument based on the surface plasmon resonance technique. RRF interacted with 70S ribosomes as well as 50S and 30S subunits, although it interacted preferentially with 50S subunits, which was clearly seen under high but physiological ionic conditions. This 50S interaction was diminished by a single amino acid substitutions for Arg132 of RRF, which did not appreciably affect the protein folding but nullified the activity in vivo and in vitro. Moreover, a set of antibiotics that inhibited the RRF-50S interaction were also inhibitory to the polysome breakdown activity of RRF in vitro. The BIACORE technique also worked very well in demonstrating the action of the antibiotics thiostrepton and fusidic acid, which are inhibitory to the RRF function by freezing the pre- and post-translocation intermediates catalysed by EF-G. These results suggest that the preferential interplay of RRF with the 50S subunit may be of biological significance, probably reflecting the mode of RRF action. The BIACORE technique proved useful for real-time monitoring of the interaction between the ribosome and translation factors, as well as for screening of potential inhibitors for ribosome recycling factor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.