Abstract

When we move our eyes, why does the world look stable even as its image flows across our retinas, and why do afterimages, which are stationary on the retinas, appear to move? Current theories say this is because we perceive motion by summation: if an object slips across the retina at r°/s while the eye turns at e°/s, the object's perceived velocity in space should be r + e. We show that activity in MT+, the visual-motion complex in human cortex, does reflect a mix of r and e rather than r alone. But we show also that, for optimal perception, r and e should not summate; rather, the signals coding e interact multiplicatively with the spatial gradient of illumination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.