Abstract

Sarcoplasmic reticulum Ca2+-ATPases (SERCAs) regulate cellular calcium homeostasis and are targeted for age-related diseases. Among 14 SERCA mRNA splice variants, SERCA1a is specific to adult fast-twitch skeletal muscle. Quercetin derivatives (monochloropivaloylquercetin (CPQ), IC50 = 195.7 µM; 2-chloro-1,4-naphthoquinonequercetin (CHNQ), IC50 = 60.3 µM) were studied for their impact on SERCA1a using molecular modeling and enzyme kinetics. While there were some similarities in kinetic parameters and molecular modeling, the compounds exhibited diverse actions on SERCA1a. Quercetin reduced activity by 48% at 250 μM by binding to the cytosolic ATP-binding pocket with increased ATP affinity. CPQ bound near the Ca2+-binding site, possibly altering the transmembrane domain. CHNQ significantly reduced activity by 94% at 250 μM without binding to substrate sites. It was proposed that CHNQ induced global protein structure changes, inhibiting Ca2+-ATPase activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.