Abstract

Pseudomonas aeruginosa commonly infects the airways of patients with cystic fibrosis and bronchiectasis. It produces several toxins that slow ciliary beat, stimulate mucus production and damage epithelium. It adheres to epithelial cells, damaged mucosa (in animal models), and mucus. However, little is known of the interaction of P. aeruginosa with intact human respiratory mucosa. We have studied the interactions of a nonmucoid clinical isolate of P. aeruginosa with adenoid tissue in a novel organ culture model with an air-mucosal interphase P. aeruginosa (5.9 +/- 0.9 x 10(6) colony-forming units (cfu)) was pipetted onto the organ culture surface, and incubated for 15 min, 1, 2, 4, 8, 12, 16, and 24 h, at 37 degrees C in 5% CO2 in a humidified atmosphere. Assessment has been made by transmission and scanning electron microscopy. Transmission electron microscopy (TEM) showed that uninfected organ cultures had normal ultrastructure. TEM of infected organ cultures at 8 h showed significant epithelial damage: 43.9 +/- 10% of cells extruding from the epithelial surface, 17.7 +/- 3% of cells with loss of cilia, 32.9 +/- 10.2% of cells with mitochondrial damage, and 11.6 +/- 3% of cells with cytoplasmic blebbing. P. aeruginosa only infrequently adhered to normal epithelium, but adhered to areas of epithelial damage and to basement membrane. Scanning electron microscopy (SEM) of organ cultures up to 2 h found P. aeruginosa only infrequently associated with mucus. SEM at 4 h revealed P. aeruginosa predominantly associated with mucus and extruded damaged epithelial cells, but also occasionally associated with cilia, and very occasionally with unciliated cells.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.