Abstract

Bridging hydroxyls (Si–OH–Al) in zeolites are catalytically active for a multitude of important reactions, including the catalytic cracking of crude oil, oligomerization of olefins, conversion of methanol to hydrocarbons, and the selective catalytic reduction of NOx. The interaction of probe molecules with bridging hydroxyls was studied here on a novel two-dimensional zeolite model system consisting of an aluminosilicate forming a planar sheet of polygonal prisms, supported on a Ru(0001) surface. These bridging hydroxyls are strong Bronsted acid sites and can interact with both weak and strong bases. This interaction is studied here for two weak bases (CO and C2H4) and two strong bases (NH3 and pyridine), by infrared reflection absorption spectroscopy, in comparison with density functional theory calculations. Additionally, ethene is the reactant in the simplest case of the olefin oligomerization reaction which is also catalyzed by bridging hydroxyls, making the study of this adsorbed precursor state part...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.