Abstract

The precipitation kinetics of vanadium carbides and its interaction with the austenite-to-ferrite phase transformation is studied in two micro-alloyed steels that differ in vanadium and carbon concentrations by a factor of two, but have the same vanadium-to-carbon atomic ratio of 1:1. Dilatometry is used for heat-treating the specimens and studying the phase transformation kinetics during annealing at isothermal holding temperatures of 900, 750 and 650 °C for up to 10 h. Small-Angle Neutron Scattering (SANS) and Atom Probe Tomography (APT) measurements are performed to study the vanadium carbide precipitation kinetics. Vanadium carbide precipitation is not observed after annealing for 10 h at 900 and 750 °C, which is contrary to predictions from thermodynamic equilibrium calculations. Vanadium carbide precipitation is only observed during or after the austenite-to-ferrite phase transformation at 650 °C. The precipitate volume fraction and mean radius continuously increase as holding time increases, while the precipitate number density starts to decrease after 20 min, which corresponds to the time at which the austenite-to-ferrite phase transformation is finished. This indicates that nucleation and growth are dominant during the first 20 min, while later precipitate growth with soft impingement (overlapping diffusion fields) and coarsening take place. APT shows gradual changes in the precipitate chemical composition during annealing at 650 °C, which finally reaches a 1:1 atomic ratio of vanadium-to-carbon in the core of the precipitates after 10 h.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call