Abstract

The interaction of Yersinia pseudotuberculosis porin solubilized in deoxycholate with the S- and R-forms of endogenous lipopolysaccharide (LPS) was studied by the quenching of intrinsic protein fluorescence. The samples of S-LPS differed both in the length of O-specific polysaccharide (n = 1 and 4) and in the acylation degree of the 3-hydroxytetradecanoic acid residues of the lipid A moiety (12-66%). R-LPS (12%) binding to porin was found to occur with positive cooperativity on two integrated structural regions of the R-LPS macromolecule, namely, core oligosaccharide and lipid A. The mode of porin interaction with low-acylated S-LPSs (15 or 20%) coincided with a model involving three types of binding sites. The shape of Scatchard curves of binding indicates that a complex formation between porin and low-acylated S-LPS is cooperative at low and moderate ligand concentration, whereas at near-saturating LPS concentrations porin binds to LPS independently on two types of binding sites. The O-specific polysaccharide chain in the S-LPS macromolecule increases the affinity of its interaction with porin in comparison with R-LPS-porin binding. A significant increase (to 66%) in the degree of S-LPS acylation substantially changed its porin-binding character: the process became anti-cooperative with lowered affinity. Thus, the features of LPS-porin interaction significantly depend on the conformational changes in the LPS molecule due to expanding of its hydrophobic region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.