Abstract

Understanding nanoplastic (NP, or nanoparticle in general) toxicity requires establishing the causal relationships between the physical properties of the nanoparticles and their biological impact. We use spectroscopic, zeta-potential, and dynamic light scattering (DLS) techniques to investigate the formation, structure, and catalytic properties of hemoglobin corona complexes with polystyrene NPs (0–10 mg/mL) of various diameters (20, 50, 100, 500, and 5000 nm). Resonance light scattering, zeta-potential analysis, and DLS demonstrated that hemoglobin corona complexes formed different forms of aggregates with NPs in terms of diameter. Medium-sized (100 nm) NPs induced the most significant conformational alterations in the protein corona compared to smaller and larger ones, which was revealed by spectroscopic assays. However, the catalase-like activity of hemoglobin was promoted in the presence of 100 nm NPs by as high as 35.2 %. NP curvature and surface area are antagonistic factors that govern the conformation of proteins together. This also suggests that 100 nm NPs are more likely to disrupt protein-dependent physiological processes at a given mass concentration than small or large NPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.