Abstract
Pt-based drugs are widely used in clinics for the treatment of cancer. The mechanism of action of these molecules relies on their interaction with DNA. However, the recognition of these metal compounds by proteins plays an important role in defining pharmacokinetics, side effects and their overall pharmacological profiles. Single crystal X-ray diffraction studies provided important information on the molecular mechanisms at the basis of this process. Here, the molecular structures of representative adducts obtained upon reaction with proteins of selected Pt-based drugs, including cisplatin, carboplatin and oxaliplatin, are briefly described and comparatively examined. Data indicate that metal ligands play a significant role in driving the reaction of Pt compounds with proteins; non-covalent interactions that occur in the early steps of Pt compound/protein recognition process play a crucial role in defining the structure of the final Pt-protein adduct. In the metallated protein structures, Pt centers coordinate few protein side chains, such as His, Met, Cys, Asp, Glu and Lys residues upon releasing labile ligands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.