Abstract

Interactions of plastic particles with different organic/inorganic pollutants including heavy metals impact their ecotoxicological potential, and proper understanding in this regard is important for their ecological risk assessment. However, many studies have reported the interactions between micro-/nanoplastics (MNPs) and heavy metals (HMs), but the most prevalent interactive forces and factors monitoring their interactions are still not clear. So, the present review represents the mechanisms of interactions with special emphasis on major interactive forces and biophysicochemical and environmental factors influencing trace element's adsorption onto the surface of MNPs. Electrostatic interaction and pore-filling mechanism can best explain the HMs adsorption to MNPs. A number of biophysicochemical factors (such as biofilm, size, crystallinity, and surface charge) and environmental factors (such as pH, salt, and temperature) act together for mediating interactions and ecotoxicities of MNPs and HMs in the real environment. From a toxicological point of view, the synergistic mode of action may be more active in animals, whereas the antagonistic activity may be prevalent in plants. Besides polymer density, biofilm formation and agglomeration property of MNPs can control the vertical distribution of MNPs along the water column. Finally, the ecotoxicological potential of MNPs in the natural environment can be considered as a function of spatiotemporal variation in abiotic (including MNPs and heavy metals) and biotic components. This review will be helpful in the detail understanding of ecotoxicological risk assessment of MNPs in relation to their interaction with heavy metals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.