Abstract

The intrinsic fluorescence emission spectrum of elongation factor EF-2 due to the 7 Trp residues was not modified after complete phosphorylation of the factor by the specific Ca 2+/Calmodulin-dependent kinase III. The effect of nucleotide binding on this fluorescence revealed differences between phosphorylated and unmodified EF-2. Low concentrations of GTP had a smaller quenching effect on the fluorescence of phosphorylated EF-2 than on the fluorescence of unmodified EF-2, whereas GDP had exactly the same quenching effect on the fluorescence of both samples. These results suggest that phosphorylation of EF-2 decreased its affinity for GTP but not for GDP. Ability of phosphorylated EF-2 to form a ternary complex with ribosomes in the presence of a non-hydrolysable GTP analog and its ability to protect ribosomes against ricin-inactivation were both decreased to the same extent. The lower affinity of phosphorylated EF-2 for GTP could be responsible for a weaker and/or incorrect interaction of the factor with the ribosome, in particular with the ricin-site of the 28-S rRNA assumed to be involved in translocation initiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.