Abstract
This paper investigates the interaction within a liposome-based drug delivery system in silico. Results confirmed that phospholipids, cholesterol, beta-carotene, and vitamin C in the liposome structures interact noncovalently. The formation of noncovalent interactions indicates that the liposomal structures from phospholipid molecules will not result in chemical changes to the drug or any molecules encapsulated within. Noncovalent interactions formed include (i) moderate-strength hydrogen bonds with interaction energies ranging from -73.6434 kJ·mol-1 to -45.6734 kJ·mol-1 and bond lengths ranging from 1.731 Å to 1.827 Å and (ii) van der Waals interactions (induced dipole-induced dipole and induced dipole-dipole interactions) with interaction energies ranging from -4.4735 kJ·mol-1 to -1.5840 kJ·mol-1 and bond lengths ranging from 3.192 Å to 3.742 Å. The studies for several phospholipids with short hydrocarbon chains show that changes in chain length have almost no effect on interaction energy, bond length, and partial atomic charge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advances in Pharmacological and Pharmaceutical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.